
Mechatronics
MMME3085

Module Convenor – Abdelkhalick Mohammad

Stepper Motors and
Algorithms

Lecture 8

Lecture Objectives

• To understand how to interface a stepper
motor to a computer

• To appreciate the issues associated with
generating the movements for a stepper motor

• Understand the stepper motor characteristics

• To link the contents of this lecture and previous
lectures on Motors to what you will see in Lab 2

A typical Mechatronics System

Computer
or micro-
processor

Program
e.g., in C

Buses
in
computer

Digital
signal

Analogue
signal

Digital
signal

Digital
signal

Analogue
signal

Digital signal

Digital
output
inter-
face;
timer

DAC Electronic
hardware

Actuators

Mechanical
system

Digital
input
inter-
face;
counters

Sensors

ADC Electronic
hardware

1,4,10

 2,3,10
 5,6

7,8,9

Recap

From last lectures

So far, we learned …
• How to deal with digital signals including train of pulses

§ Generate digital signal
§ Read digital signal

• Timer/Counters as a hardware solution
• Registers in µp
• State Tables
• Finite State Machines
• Interrupt
• DAC and ADC
• DC servo Motor & Stepper Motors

Stepper Motors
Control

Introduction

Brief Revision

• Simple and convenient way of providing precise
movement

• Normally open loop mode, no feedback
• They are used in a wide variety of applications

including:
• 3D printers and hobby CNC machines
• Computer peripherals
• Laboratory equipment
• Student projects

What controls the stepper motor?

PC or
micro-

processor

Stepper
motor

controller

Trans-
lator

Step

Dir

Gnd

Driver

Gnd

A
A
B
B

B

A

Note: combined in Arduino
including program and i/o port

Last lectureThis lecture

• We normally want to control stepper motor from a computer
• Need “step” and “direction” pulses to give required:

• Number of steps
• Maximum velocity
• Acceleration/deceleration profile

Stepper Motors
Control

Conversion of velocity profile to a steps

What is a motion profile?

Stepper Motors applications require defined, controlled movements, often to move a part to a
specified position at a precise velocity or along a predetermined path. A motion profile provides the
physical motion information and graphically depicts how the motor should behave during the
movement (often in terms of position, velocity, and acceleration) and is used by the stepper
controller to determine what commands (steps) to send to the motor.

position

velocity

acc/dec

What is a velocity profile?!

A velocity profile is a graph that shows how the speed of a stepper motor changes over time. It is
used to control the motor's acceleration, deceleration, and maximum speed. There are several
different types of velocity profiles, but the most common are:

• Trapezoidal profile: This is
the simplest type of profile and
is easy to implement. It
consists of three
phases: acceleration, constant
speed, and deceleration.

• S-curve profile: This is the
most complex type of profile
and is used for applications
that require very smooth
motion.

How to convert the Velocity profiles à Steps?!

t

Velocity

Ramp up Ramp
down

Velocity profile

Time per Step Vs Step per Time

There are two main approaches to step generation [1]:

Time per step:
• Calculate time until next step is due
• Keep checking if time has elapsed
• If time elapsed, make step
• Re-calculate interval then repeat as

above

Step per time:
• Calculate time since last step
• Multiply it by current speed to get

desired distance moved
• Keep doing the above until it

exceeds 1 step
• Make step and re-calculate speed,

repeat.§ This approach is used in Leib Ramp
algorithm, AccelStepper library, GRBL

§ We will focus on time per step
algorithms and how they are implemented

[1] M Y Stoychitch 2018 IOP Conf. Ser.: Mater. Sci. Eng. 294 012055

Stepper Motors
Control

How can we generate the steps on a hardware?!

Time per step: Implementation 1

• Lab 2 experiment illustrates two approaches to
implementing “time per step”:
• A timed loop, like in “BlinkWithoutDelay”

(but in µs), here p is time per step:

15
p is re-calculated here for next step

Timed loop code

Actually, make a step pulse

Time per step: Implementation 1

Time per step: Implementation 2

Remember this from Lecture 3 J!

Time per step: Implementation 2

• Alternative approach implemented in Lab 2:
• A hardware timer configured in CTC mode with

interval p, triggers ISR every p ticks:

(don’t learn details but understand that timer
triggers interrupt calling the ISR every period p)

Time per step: Implementation 2

• This hardware timer triggers an interrupt
which is serviced by an ISR, which makes step &
recalculates time p per step

p is re-calculated here for next step

Actually, make a step pulse
New interval p written to timer

Stepper Motors
Control

Time per step (p) calculation

Time per step: possible solutions

?!

Time per step: a possible problem

• Calculating the next time interval p involves non-trivial calculations
including division

• May be insufficient time available to calculate the time for the next
step!

• So some ingenious methods have been derived which typically involve
either:
• Pre-calculation of an array of step times which can be executed at

leisure, or:
• Use approximate formulae

1) Simple approximation
2) Approximation based on Taylor series (e.g. Leib Ramp, Austin)

Approximate formulae: 1) Simple approximation

S: Number of steps

This will work but it is not that great profile L!

Approximate formulae: 2) Approximation based on Taylor series

Eiderman’s Leib Ramp algorithm

?!

from

O
ptional

 enhancem
ent

Approximate formulae: 2) Approximation based on Taylor series

The motion profile inputs

Up-front calculation – Time-intensive

()new old 1 1.5p p q q q= + + ´ ´

old oldq m p p= ´ ´
 or 0 or m R m m R= - = = -

p can be calculated on-the-fly

The calculations are simple
(addition and multiplication) J!

Stepper motor control on Arduino

• Not usually appropriate to write your own…
• Various libraries available of varying usefulness:

• Stepper library comes as standard: only allows
constant-speed movement, no ramping.

• Drives H bridge (e.g L298) directly, not
compatible with “step and direction” drivers
used industrially and in labs

• “Blocking” i.e. can’t run steps in background
and get on with other tasks

Stepper motor control on Arduino

• Various libraries available of varying usefulness:
• AccelStepper: broadly similar to approach used

in Lab 2
• Uses timed loop based on micros()
• Approximate calcs based on Taylor series
• Based on theory by Austin (rather than

Eiderman’s Leib Ramp
• Timed loop called repeatedly from loop()
• Non-blocking: can get on with other tasks
• Forms basis of various other libraries

Stepper Motor
Characteristics

Introduction

Stepper motor characteristics

• Stepper motors run at a speed directly
proportional to the step rate

• Stepper motors don’t work like that!
• As the load varies:

–Either the motor runs as planned at the
correct speed for that pulse rate

–Or the motor stops running as planned and
becomes desynchronised

Stepper motor characteristics

• Generally speaking, if motor becomes
desynchronised with the magnetic field
driving it around:

–Position and accuracy are lost for remainder
of the time machine is in use before being
reset

–Whole purpose of stepper motor is negated

Stepper motor characteristics

• Typical characteristics are quoted for a given motor
supply voltage or current

Torque

Speed

Can operate anywhere
in here without
desynchronisation occurring

Dynamics

Stepper Motor
Characteristics

Stepper Motor Dynamics

• To select a stepper motor need to know:
– what is the inertia of the driven system, referred to the

stepper motor axis?
– NB: driven inertia should be similar to that of motor

itself (not hugely larger) or dynamics will be poor
– what is the speed profile required?
– what is the acceleration/deceleration required?
– hence what torque is required from the motor?

Dynamics, Example

Stepper Motor
Characteristics

Stepper motor dynamics: Example

• A system has a moment of inertia (referred to the stepper
motor shaft) of 6´10-5 kg m2. Its torque-speed
characteristic may be modelled as a constant frictional
torque of 0.3 Nm.

• It needs to be accelerated from rest to its maximum speed
of 20 rev/s in 0.2 second. Select a stepper motor from the
range (call them types 100, 200, 300) whose
characteristics are given in the slides.

Stepper motor dynamics: Example

Type 100 (J = 8 x 10-6 kg m2)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1000 2000 3000 4000 5000 6000

Steps per second (1.8 deg)

To
rq

ue
 (N

m
)

Pull-out curve

Type 200 (J = 2.5 x 10-5 kg m2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1000 2000 3000 4000 5000 6000

Steps per second (1.8 deg)

To
rq

ue
 (N

m
)

Pull-out curve

Very loosely based on the McLennan stepper motor characteristics

Type 100 Type 200

Type 300 (J = 3.5 x 10-5 kg m2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000

Steps per second (1.8 deg)

To
rq

ue
 (N

m
)

Pull-out curve

Very loosely based on the McLennan stepper motor characteristics

Type 300

Stepper motor dynamics: Example

In practice you would have to calculate the
frictional torque, maximum speed, acceleration
and referred inertia yourself from the
characteristics and desired behaviour of the
system. For simplicity, we’ve done it for you

Stepper motor dynamics: Example

• Maximum speed is 20 rev/s. We need
to convert this to steps/s

• Each step is 1.8 degrees
• There are 360 degrees in one rev.

• So 20 rev/s is 20´360/1.8=4000 steps
per second

Stepper motor dynamics: Example

• Acceleration: for dynamics we need this in rad/s2
• Maximum speed is 20 rev/s which is:

20 ´ 2p = 40p rad/s
• Go from zero to 40p rad/s in 0.2s
• Acceleration is 40/0.2 rev/s2 = 100 rev/s2
 = 200p
 = 628.3 rad/s2 (call this a)

Stepper motor dynamics: Example

• First check: can motor produce enough steady-
state torque at required speed?

• Remember, we need 0.3 Nm at 4000 steps/s

• If we choose type 100, max torque at 4000
steps/s is about 0.15 Nm so can see straight
away that it cannot provide necessary torque
even for constant speed running (0.3 Nm).

Stepper motor dynamics: Example

Type 100 (J = 8 x 10-6 kg m2)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1000 2000 3000 4000 5000 6000

Steps per second (1.8 deg)

To
rq

ue
 (N

m
)

Pull-out curve

Stepper motor dynamics: Example

• If we choose type 200: can produce enough
torque for steady-state running (can produce
0.43 Nm, need 0.3 Nm)

• But has it got enough torque to accelerate
rapidly enough?

• Need enough torque to accelerate whole
system at 628.3 rad/s2 AND overcome
friction

Stepper motor dynamics: Example

Type 200 (J = 2.5 x 10-5 kg m2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1000 2000 3000 4000 5000 6000

Steps per second (1.8 deg)

To
rq

ue
 (N

m
)

Pull-out curve

Stepper motor dynamics: Example

If we choose type 200:

 has inertia 2.5´10-5 kg m2,

 total moment of inertia is 2.5´10-5 + 6´10-5

= 8.5´10-5 kg m2 (call this Jtotal)

Stepper motor dynamics: Example

Total torque required is:
torque to cause acce’n + steady state torque

= Jtotal ´ a + steady-state torque

= 8.5´10-5´628.3 + 0.3 = 0.353 Nm.

So, the available torque of 0.43 Nm is OK by a small
factor (1.2) – not much margin for error

Stepper motor dynamics: Example

If we choose type 300:
has inertia 3.5´10-5 kg m2, total moment of
inertia is 9.5´10-5 kg m2.

Total torque required is:
 9.5´ 10-5 ´628.3 + 0.3 = 0.359 Nm.
Torque available at 4000 steps/s is 0.57 Nm
so probably a safer bet, factor of safety 1.61
(better, probably about the minimum).

Stepper motor dynamics: Example

Type 300 (J = 3.5 x 10-5 kg m2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000

Steps per second (1.8 deg)

To
rq

ue
 (N

m
)

Pull-out curve

Resonance

Stepper Motor
Characteristics

A major problem with stepper motors: resonance

•Rotor is held at a given
position by magnetic
flux
•Rotor is not held rigidly
- has a finite stiffness

S

N

A major problem with stepper motors: resonance

S

N

• When torque is applied,
rotor can be displaced
from its neutral position

• But remember the rotor
also has inertia

A major problem with stepper motors: resonance

S

N

• When torque is applied,
rotor can be displaced
from its neutral position

• But remember the rotor
also has inertia

A major problem with stepper motors: resonance

• So, we have a system with:
– rotational (angular) stiffness
– rotational inertia

• Rotational version of mass-
spring system (no obvious
damping!) m

k

S

N

A major problem with stepper motors: resonance

• Inertia + stiffness + some oscillatory driving
force (e.g. stepping) = resonance

• At resonance, rotor oscillates instead of
stepping neatly from pole to pole

• Loss of synchronisation hence loss of usefulness
of system

A major problem with stepper motors: resonance

• Demonstration of resonance

• Stepper motor behaving badly!

Link Lab 2 to
Lectures

Laboratory 2: Motion Control

Motor Driver

DC Servo Motor: 1) Open-loop and 2) Closed-loop

Laboratory 2: Motion Control

Motor Driver

DC Servo Motor: 1) Open-loop and 2) Closed-loop
Desired Angle

+-

Error

Laboratory 2: Motion Control

Stepper Motor: Open-loop

Laboratory 2: Motion Control

• This is the lab kit which you will use in Lab 2 (same as lab 1)

Experiment 1: DC Servo Motor: Open-loop

Experiment 2: DC Servo Motor: Closed-loopExperiment 3: Stepper Motor (Open-loop)

Have a Look Into the Lab
Code!

Experiment 1: DC Motor (Open-loop control)

Experiment 2: DC Motor (Closed-loop control)

Receive speed from the user

Receive position from the user

Experiment 2: DC Motor (Closed-loop control)

Receive position from the user

Proportional Controller (P)

Experiment 2: DC Motor (Closed-loop control)

Receive position from the user

Proportional Integral and Derivative
 Controller (PID)

Experiment 2: DC Motor (Closed-loop control)

Receive position from the user

Proportional Integral and Derivative
 Controller (PID)

Experiment 2: DC Motor (Closed-loop control)

Receive position from the user

Proportional Integral and Derivative
 Controller (PID)

Experiment 3: Stepper Motor (Open-loop control)

1) Simple approximation
2) Approximation based on Taylor series (e.g. Leib Ramp, Austin)

Experiment 3: Stepper Motor (Open-loop control)

Runs only if we have a new position to move to!

Printing loop, slow!

Stepping loop!

Experiment 3: Stepper Motor (Open-loop control)

Summary

• Understand finer details of how a stepper motor
is used

• Understand how to interface a stepper motor to a
computer

• Appreciate the issues associated with generating
the movements for a stepper motor

• Understand the stepper motor characteristics
• Link the lectures contents with what we will see

in the lab next week!

