r University of _
Nottingham P -

.
UK | CHINA | MALAYSIA /4’.

Lecture 8

o Stepper I\/Iotors and
Algorlth ms

Mechatronics
MMME3085

Module Convenor — Abdelkhalick Mohammad

University of . .
) Nottingham 1] ecture Objectives

» To understand how to a stepper
motor to a computer

» To appreciate the i1ssues associated with
for a stepper motor

» Understand the stepper motor

 To link the contents of this lecture and previous
lectures on Motors to what you will see in

University of _ .
I Nottingham | A typical Mechatronics System

UK | CHINA | MALAYSIA

Digitall Analogue 7 /4 .I 9
3~ signa i :
Digital | _|signa [y) ~ signal » Electronic
putput R hardware
Inter- Digital
face; signal i
fimer Actuators
||
B 5 6]
Buses ’ Mechanical
computer system
1
Digital Sensors
. Digital Analogue i
Program }nput signal signal v
e.g., in C Inter- | ADC |« Electronic
face;
X) hardware
counters Digital signal

University of

Nottingham

UK | CHINA | MALAYSIA

r University of
| 3 ﬂ"fﬂ?%?fgl From last lectures

So far, we learned ...

« How to deal with digital signals including train of pulses

= Generate digital signal
= Read digital signal

« Timer/Counters as a hardware solution
» Registers in up
 State Tables

 Finite State Machines

* Interrupt
« DACand ADC
 DC servo Motor & Stepper Motors

IIIIIII

ﬂ'. Nottlngham

Stepper Motors
Control

Introduction

l' University of . —
& Nottingham | Brjef Revision

- Simple and convenient way of providing precise
movement

« Normally open loop mode, no feedback
« They are used in a wide variety of applications
including:
3D printers and hobby CNC machines
« Computer peripherals
« Laboratory equipment
« Student projects

8 University of
I', Nottingham | \WWhat controls the stepper motor?

UK | CHINA | MALAYSIA

Note: combined in Arduino
cluding program and i/o portl

This lecture Last lecture
e e ATl
! o Stepn 1L 2
I PC or epper |1 i
: micro- <::‘> motor _li)lr L TI?C';? —g Driver
Frocessor
: p controller |(gng and
i
1
i

=3

We normally want to control stepper motor from a computer
Need “step” and “direction” pulses to give required:
Number of steps
« Maximum velocity
Acceleration/deceleration profile

m University of
Nottingham
UK | CHINA | MALAYSIA

—~~~

Stepper Motors
Control

Conversion of velocity profile to a steps

3 University of . . -
I', Nottingham | \X/hat is a motion profile?

UK | CHINA | MALAYSIA

Stepper Motors applications require defined, controlled movements, often to move a part to a
specified position at a precise velocity or along a predetermined path. A motion profile provides the
physical motion information and graphically depicts how the motor should behave during the

movement (often in terms of , , and) and is used by the stepper
controller to determine what commands () to send to the motor.
1200 r 48
1000 e - 40
: position
800 - : - - 32
I
|
c 600 - 4 + 24
2 ! c
= 1 2
'g I . 4
ol velocity "
0 E - - - v T 0
0 100 Tiine 200 300 400 500, 600
-200 t 8
acc/dec

400 - L .16

> University of - - .
!.', Nottingham '\What is a velocity profile?!

UK | CHINA | MALAYSIA

A velocity profile is a graph that shows how the speed of a stepper motor changes over time. It is
used to control the motor's acceleration, deceleration, and maximum speed. There are several
different types of velocity profiles, but the most common are:

Trapezoidal

- Trapezoidal profile: This is
the simplest type of profile and _‘§ / \
is easy to implement. It > Time
consists of three 3
phases: acceleration, constant a \\ 4 - T Time
speed, and deceleration. 8 | Masiiai Joik
S-Curve
* S-curve profile: This is the z
most complex type of profile 3 _/ \ i

and is used for applications
that require very smooth
motion.

A

\ _/ Time

Less Jerk

Decel Accel

8 University of
I Nottingham How to convert the Velocity profiles > Steps?!

UK | CHINA | MALAYSIA

Velocity

Velocity profile

gé’
=
=

Spee

Ramp up Ramp "

down
: = | U U U UUUUCLUUCUESSID

Speed - -

B University of
!", Nottingham Time per Step Vs Step per Time

UK | CHINA | MALAYSIA

There are two main approaches to step generation [1]:

Time per step:
 Calculate time until next step is due
« Keep checking if time has elapsed
 If time elapsed, make step

« Re-calculate interval then repeat as
above

= This approach is used in Leib Ramp
algorithm, AccelStepper library, GRBL

= We will focus on time per step
algorithms and how they are implemented

Step per time:

Calculate time since last step

Multiply it by current speed to get
desired distance moved

Keep doing the above until it
exceeds 1 step

Make step and re-calculate speed,
repeat.

[1] MY Stoychitch 2018 IOP Conf. Ser.: Mater. Sci. Eng. 294 012055

m University of
Nottingham
UK | CHINA | MALAYSIA

—~~~

Stepper Motors
Control

How can we generate the steps on a hardware?!

i

A

University of

Nottingham | Time per step: Implementation 1

« Lab 2 experiment illustrates two approaches to
implementing “time per step”:

A timed loop, like in “BlinkWithoutDelay”
(but in us), here p is time per step:

B B B L e e e e AL

assoclated cCi IIilILI_I “J
turrentMicros = micros(); Timed loop code
1f (currentMicros - prewvitepTime >=
{
@ve OneStep D Actually, make a step pulse

previtepTime = currentMicros;
@mputeNeWSpeed (])

p is re-calculated here for next step

University of . .
I Nottingham | Time per step: Implementation 1

UK | CHINA | MALAYSIA

void moveOneStep()
/* Move a single step, holding pulse high -
1
if (p != @) /* p=@ MEANS "don't step"™ */
1
digitalWrite(stepPin, HIGH);
if (direction == FWDS)
1
digitallWrite{dirPin, HIGH);
currentPosition++;
¥
else
1
digitalWrite(dirPin, LOW);
currentPosition--;
¥
delayMicroseconds({stepLengthMus);
digitallrite(stepPin, LOW);

University of . .
I Nottingham | Time per step: Implementation 2

UK | CHINA | MALAYSIA

University of

Nottingham |2 Clear Timer on Compare Match (CTC) Mode

A TCNTO
* In CTC mode the counter is cleared P A0 NGO N T
to zero when the counter value
(TCNTn) matches either the OCRnA
or the ICRn (later we see this). . 5 _ Ttime
» The OCRnA or ICRn define the top P, PR A b | i
value for the counter, hence also its .
resolution. 4 TCNTO
» This mode allows greater control of OxFF
the compare match output el
frequency. |
« It also simplifies the operation of 1T 1T [1 ¢ & T s
counting external events. BN EREENRNEE
OCo
>

University of

Nottingham | Time per step: Implementation 2

UK | CHINA | MALAYSIA

o Alternative approach implemented in Lab 2:

« A hardware timer configured in CTC mode with
interval p, triggers ISR every p ticks:

cli(); f* Temporarily disable interrupts */

TCCR1A = @; /* No output compare */

TCCR1B = (1 << WGM12); /* CTC mode: reset timer when TCHNT1 == OCR1A */

OCR1A = @; /* Set to zero initially, over-wtite in ISR */

TCCR1B |= ({1 << (C512); /* Prescaler 256 (1illustrative only) */

TIMSK1 |= (1 << OCIE1lA); /* Interrupt to call ISR when TCNT1l == OCRLA */
f %

sei(); Re-enable interrupts */

(don’t learn details but understand that timer
triggers interrupt calling the ISR every period p)

University of . .
I Nottingham | Time per step: Implementation 2

UK | CHINA | MALAYSIA

« This hardware timer triggers an interrupt
which is serviced by an ISR, which makes step &
recalculates time p per step

ISR{TIMERL_COMPA vect)
/* Interrupt service routine which calls moveOneStep and computeNewSpeed.
i
if (p == @)
TIMSK1 &= !(1 << OCIE1lA); /* Disable interrupt if not stepping */
else

¢ Trveonesten(} ;>Actually, make a step pulse
New interval p written to timer

OCR1A = (long - 1D /% Set timer [EEC) interval which 1s p ticks */
computelewsSpeed() ; /* Calculates timer interval p set in next ISR call */

b p is re-calculated here for next step

* f
J

m University of
Nottingham
UK | CHINA | MALAYSIA

—~~~

Stepper Motors
Control

Time per step (p) calculation

3 University of . . -
I Nottingham | Time per step: possible solutions

UK | CHINA | MALAYSIA

By rearranging [2]
t=(v-vg/a [3]

and putting it in [1] we have

Velocity
_ S = (vV’-vod)/(2a) [4]
Vv Velocity profile and
V=(V'+2a"S)"? [5]
that can be represented as a recursive form of speed calculation for one
a step:
— . 2 Ca\12
Ramp up Ramp Vi = (Vi +2°) [6]
Vo down where
> i - stepnumber (1<i<$S).
t

<«

a4

To produce the speed profile for stepper motor we need to provide the real
time delays between step pulses:

p=F/vi [7]

The linear acceleration (ramping) formulas are: where

. .42
S=Voteart/2 1] pi - delay period for the i-th step (timer ticks),
V=vVvy+at 2] F - timer frequency (count of timer ticks per second),

so according to [6] the exact delay value will be:

pi= F/(F/pu)*+2-a)"% [g

where

S - acceleration distance, in stepper motor case - number of steps,
Vo - initial velocity, base speed (steps per second), or
v - target velocity, slew speed (steps per second),
a - acceleration (steps per second per second),
t - acceleration time, ramping period (seconds).

pi = pit/(1+pii’ 2-a/F)"% |9 2\

8 University of _ _
!", Nottingham | Time per step: a possible problem

« (Calculating the next time interval p involves non-trivial calculations
including division

« May be insufficient time available to calculate the time for the next
step!

« So some ingenious methods have been derived which typically involve
either:

« Pre-calculation of an array of step times which can be executed at
leisure, or:

« Use approximate formulae
1) Simple approximation
2) Approximation based on Taylor series (e.g. Leib Ramp, Austin)

8 University of . _ _ .
!.1 Nottingham | Approximate formulae: 1) Simple approximation

UK | CHINA | MALAYSIA

o p_. = p., —Ap (during acceleration)
Velocity

Velocity profile e D..., = P,y (during constant speed phase)

o p... = P, T Ap (during deceleration)

p up Ramp
down
- 5
Prmax Pmin Pmin Pmax Ve|0CitY‘

Velocity profile

S: Number of steps ®
Prax — Prmin Ramp
Ap - S Ramp up down

University of

Nottingham

UK | CHINA | MALAYSIA

i

A

Eiderman’s Leib Ramp algorithm

Velocity
Vv Velocity profile

Ramp

Ramp up Hamt

»
<« »

a4

1 ML

pi=pu/(+pit2alF) o P

Using Taylor series

1/(1+n)"? ~ 1-n/2 [10]

when -1 <n<1 we can approximate [9] to

P = P (1-puyalF) [i1]
P}

Let's check the -1 <n <1 condition. Our n was
n=p+.2aFf? [12]

or, by velocity,

from

n=2al/vi> [13]

pi = F /v

(7]

Approximate formulae: 2) Approximation based on Taylor series

The maximum n value will be at minimum speed, on the first calculated
step, where i=2

Nmax = 2°a@/Vvys [14].
Because the minimal v, is 0, from [6] we have
Vimn = (2°@)"% [15].

So n will be always less than or equal to 1. Because our calculations are
forward-only we have no limitation in case of deceleration (negative
acceleration) too.

R=a/FF [19]

m = -R during acceleration phase,
m = 0 between acceleration and deceleration phases,
m = R during deceleration phase.

The variable delay period p (initially p = p1) that will be recalculated for
each next step is:

[20].

Using the higher order approximation of Taylor series

1/(1+n)? ~1-n/2+3°n*/8 [21] %O
we can get more accurate results replacing [20] with L % %
p=p (1+q+15qq) [22] gni
where >
q=mpp. —

8 University of : , . .
I', Nottingham | Approximate formulae: 2) Approximation based on Taylor series

UK | CHINA | MALAYSIA

Velocity
Vv Velocity profile

/
/

»
»

a4

1 ML

<«

Vo - initial velocity, base speed (steps per second),
v - target velocity, slew speed (steps per second),
a - acceleration (steps per second per second),
t - acceleration time, ramping period (seconds).

S - acceleration/deceleration distance
S = (V2-v) /(2 a) [4, 16],
p: - delay period for the initial step
pr = F/(vo®+2 a)"* [17],
ps - delay period for the slew speed steps
ps = F/v [18],
R - constant multiplier

R=a/F* [19].

pnew :pold (1+q+lsquq)

q=mXpPia> Pod
m=—R or m=0 or m=—R

8 University of _
!-', Nottingham | Stepper motor control on Arduino

« Not usually appropriate to write your own...
« Various libraries available of varying usefulness:

« Stepper library comes as standard: only allows
constant-speed movement, no ramping.

« Drives H bridge (e.g L298) directly, not
compatible with “step and direction” drivers
used industrially and in labs

« “Blocking” i.e. can’t run steps in background
and get on with other tasks

8 University of _
!i Nottingham | Stepper motor control on Arduino

« Various libraries available of varying usefulness:

« AccelStepper: broadly similar to approach used
in Lab 2

e Uses timed loop based on micros()
« Approximate calcs based on Taylor series

« Based on theory by Austin (rather than
Eiderman’s Leib Ramp

« Timed loop called repeatedly from loop()
« Non-blocking: can get on with other tasks
« Forms basis of various other libraries

m.'
Nottlngham

Stepper Motor
Characteristics

Introduction

3 University of - .
!", Nottingham | Stepper motor characteristics

 Stepper motors run at a speed directly
proportional to the step rate

 Stepper motors don’t work like that!

e As the load varies:

—Either the motor runs as planned at the
correct speed for that pulse rate

—Or the motor stops running as planned and
becomes desynchronised

3 University of - .
!", Nottingham | Stepper motor characteristics

» Generally speaking, if motor becomes
desynchronised with the magnetic field
driving it around:

—Position and accuracy are lost for remainder
of the time machine is in use before being
reset

—Whole purpose of stepper motor is negated

University of . .
!", Nottingham | Stepper motor characteristics

UK | CHINA | MALAYSIA

 Typical characteristics are quoted for a given motor
supply voltage or current

A

Torque
Can operate anywhere

in here without
desynchronisation occurring

Spee>d

m.'
Nottlngham

Stepper Motor
Characteristics

Dynamics

3 University of .
!", Nottingham | Stepper Motor Dynamics

» To select a stepper motor need to know:

— what is the inertia of the driven system, referred to the
stepper motor axis?

— NB: driven inertia should be similar to that of motor
itself (not hugely larger) or dynamics will be poor

— what is the speed profile required?
— what is the acceleration/deceleration required?
— hence what torque is required from the motor?

m.'
Nottlngham

Stepper Motor
Characteristics

Dynamics, Example

University of

Nottingham | Stepper motor dynamics: Example

A system has a moment of inertia (referred to the stepper
motor shaft) of 6x105 kg m2. Its torque-speed
characteristic may be modelled as a constant frictional
torque of 0.3 Nm.

o It needs to be accelerated from rest to its maximum speed
of 20 rev/s in 0.2 second. Select a stepper motor from the
range (call them types 100, 200, 300) whose
characteristics are given in the slides.

8 University of _
!-', Nottingham | Stepper motor dynamics: Example

UK | CHINA | MALAYSIA

Type 100 Type 200

Type 100 (J =8 x 10”° kg m?) Type 200 (J = 2.5 x 10”° kg m?)
0.35 0.7
0.3 ¥/ AN 0.6 — —
025]. — Pull-out cune | 05 | Pull-out curve |
£ £ ~
£ 02 Z
2 : 0.4 ~
g 0.15 = 5
|2 \ g 0.3
0.1 = 0.2
0.05 0.1
0 0
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Steps per second (1.8 deg) Steps per second (1.8 deg)

Very loosely based on the McLennan stepper motor characteristics

r University of
Nottingham

A

UK | CHINA | MALAYSIA

Type 300

Type 300 (J = 3.5 x 10° kg m’)
1
0.9 H \
08 \\ T 1
\| = Pull-out curve |
0.7
E 06 \
z N
o 05
=]
g \
|2 0.4
03 \\
0.2
0.1
0
0 2000 4000 6000 8000
Steps per second (1.8 deg)

Very loosely based on the McLennan stepper motor characteristics

8 University of _
!-', Nottingham | Stepper motor dynamics: Example

In practice you would have to calculate the
frictional torque, maximum speed, acceleration
and referred inertia yourself from the
characteristics and desired behaviour of the

system. For simplicity, we've done it for you

8 University of _
!-i Nottingham | Stepper motor dynamics: Example

e Maximum speed 1s 20 rev/s. We need
to convert this to steps/s

« Each step 1s 1.8 degrees
» There are 360 degrees in one rev.

* S0 20 rev/s is 20x360/1.8=4000 steps
per second

8 University of _
!-i Nottingham | Stepper motor dynamics: Example

o Acceleration: for dynamics we need this in rad/s2
« Maximum speed is 20 rev/s which is:
20 x 21t = 407n rad/s
» Go from zero to 40xr rad/s in 0.2s
o Acceleration is 40/0.2 rev/s? = 100 rev/s2
= 2007
= 628.3 rad/s2 (call this a)

8 University of _
!i Nottingham | Stepper motor dynamics: Example

e First check: can motor produce enough steady-
state torque at required speed?

« Remember, we need 0.3 Nm at 4000 steps/s

» If we choose type 100, max torque at 4000
steps/s is about 0.15 Nm so can see straight
away that it cannot provide necessary torque
even for constant speed running (0.3 Nm).

8 University of :
!'i Nottingham | Stepper motor dynamics: Example

UK | CHINA | MALAYSIA

Type 100 (J =8 x 10° kglm?)

0.35 /\

0.3 i/
_ 0.25 = Pyll-out curjle
S
£ 02
(<))
=2
o 0.75
o
-

0.1 \

0.05

0
0 1000 2000 3000 4000 5000 6000
Steps per second (1.8 deg)

8 University of _
!i Nottingham | Stepper motor dynamics: Example

o If we choose type 200: can produce enough
torque for steady-state running (can produce
0.43 Nm, need 0.3 Nm)

 But has it got enough torque to accelerate
rapidly enough?

« Need enough torque to accelerate whole
system at 628.3 rad/s> AND overcome
friction

8 University of :
!'i Nottingham | Stepper motor dynamics: Example

UK | CHINA | MALAYSIA

|
Type 200 (J =2.5x 107 kl; m’)
0.7 Velocity

0.6 '/\ \\ = Py|l-out curve v

\\\ a

Velocity profile

o
)

o
~

Torque (Nm)
o
[N

amp s

o
N}

o
-
<
o

o

A
\ 4

0 1000 2000 3000 4TO 5000 6000 t

Steps per second (1.3 deg)

8 University of :
!'i Nottingham | Stepper motor dynamics: Example

If we choose type 200:
has inertia 2.5x1075 kg m?2,
total moment of inertia is 2.5x105 + 6x1075

— 8.5X 10'5 kg m2 (Call thiS Jtotal)

8 University of :
!-i Nottingham | Stepper motor dynamics: Example

Total torque required is:
torque to cause acce’n + steady state torque

= Ji1a] X 0 + steady-state torque

= 8.5x107°%x628.3 + 0.3 = 0.353 Nm.

So, the available torque of 0.43 Nm is by a small
factor (1.2) — not much margin for error

8 University of _
A Nottingham | Stepper motor dynamics: Example

If we choose type 300:

has inertia 3.5x1075 kg m?, total moment of
inertia is 9.5x1075 kg m?2.

Total torque required is:
0.5x 1075 x628.3 + 0.3 = 0.359 Nm.

Torque available at 4000 steps/s is 0.57 Nm
so probably a safer bet, factor of safety 1.61
(better, probably about the minimum).

r University of
M Nottingham

Stepper motor dynamics: Example

UK | CHINA | MALAYSIA

Type 300 (J = 3.5|x 10° kg m?)

0.9 \
0.8 \

\\ = P|-out curve

0.7

05 S~

£
—— \
o 05
=
& A\
o 04
[\
0.3
TN
0.2
0.1
0
0 2000 4@00 6000 8000

Steps per segond (1.8 deg)

m.'
Nottlngham

Stepper Motor
Characteristics

Resonance

8 University of . _
!", Nottingham | A ' major problem with stepper motors: resonance

*Rotor 1s held at a given
position by magnetic
flux

* Rotor 1s not held rigidly
- has a finite stifftness

8 University of . _
!", Nottingham | A ' major problem with stepper motors: resonance

« When torque is applied,
rotor can be displaced
from its neutral position

e But remember the rotor
also has inertia

8 University of . _
!", Nottingham | A ' major problem with stepper motors: resonance

« When torque is applied,
rotor can be displaced
from its neutral position

e But remember the rotor
also has inertia

8 University of . :
!", Nottingham | A ' major problem with stepper motors: resonance

» So, we have a system with:
— rotational (angular) stiffness
— rotational inertia

» Rotational version of mass-
spring system (no obvious
damping!)

NN\

8 University of . :
!", Nottingham | A ' major problem with stepper motors: resonance

e Inertia + stiffness + some oscillatory driving
force (e.g. stepping) = resonance

» At resonance, rotor oscillates instead ot
stepping neatly from pole to pole

» Loss of synchronisation hence loss of usefulness
of system

8 University of . :
!", Nottingham | A ' major problem with stepper motors: resonance

« Demonstration of resonance

 Stepper motor behaving badly!

m.'
Nottlngham

Link Lab 2 to
Lectures

8 University of .
I Nottingham | | aboratory 2: Motion Control

UK | CHINA | MALAYSIA

DC Servo Motor: and 2) Closed-loop

Quadrature Serial or parallel
pulses data
Hard- S
- B LILI'L| ware p‘;'::"glr Data bus
JGND cgcei;:‘r interface |

. @ |[ViclorDriver @

r University of
M Nottingham

Laboratory 2: Motion Control

UK | CHINA | MALAYSIA

DC Servo Motor: 1) Open-loop and

Quadrature Serial or parallel Error
pulses data
iy Serial or
- BJLILI'LJ| ware varallel Data bus\ _| 0
de- : on uP
JGND interface = _
coder 1 I Control signal
p——w K .| e(1)
I 1
Ea KD.d%(’(I)

. a|VicorDien

University of

Nottingham | | gboratory 2: Motion Control

UK | CHINA | MALAYSIA

Stepper Motor: Open-loop

Velocity
Velocity profile

AP o %
t

Stepper
motor
controller

8 University of .
!", Nottingham | | aboratory 2: Motion Control

UK | CHINA | MALAYSIA

 This is the lab kit which you will use in Lab 2 (same as lab 1)

Breadboa D .
DC Servomotor / \
USB Cable G— Stepper : = DC Servomotor E
I 1
\ Motor ¥ = Driver{(iLogeess Quadrature Serial or parallel E
\ data H
- 1
’ A ‘ FJ\Zr:'e Serial or H
- e parallel H
R interface i
H
1
Power Supply i
Leads H
P !
AITTTAL |
1
Counter Click i
Board i
1
1
. . 1
Arduino Shield Arditino e ;
Stepper Power Suppl . . .
Motor Driver Tetpertics it Experiment 1: DC Servo Motor: Open-loop
Sensor Boar

(Velocity profile \I ! \=
i i

: :

Ramp up Ran& : :

down 1 1

! Quadrature Serial or parallel i

: data H

! Serial or i

: —— parallel H

! || interface !

: :

H 1

! 1

H 1

, — :

| o il H

Stepper | e |
motor i Dl i
controller | i
: i

\ ’l' ™ 4

Experiment 3: Stepper Motor (Open-loop) Experiment 2: DC Servo Motor: Closed-loop

m University of
Nottingham
UK | CHINA | MALAYSIA

—~~~

Have a Look Into the Lab
Code!

University of

Nottingham

UK | CHINA | MALAYSIA

ifs

A

Experiment 1: DC Motor (Open-loop control)

void setup()

Quadrature Serial or parallel {
data o .
i-‘:gr:ie- Serial or | /naea bus Ser‘?a?.oeglr(Qﬁ?@), .o . .
de- _parallel on uP Serial.println("Enter PWM duty cycle as a percentage (positive for forward, negative for reverse");
coder interface
Set up and initialise pin used for selecting LS7366R counte i=inactive
- pinMode(chipSelectPin, OUTPUT);
Il HIHMWH_‘.‘ " digitalWrite(chipSelectPin, HIGH);
TR LIIET
SetUplLS7366RCounter();
delay(1@0),;
pinMode(enA, OUTPUT);
pinMode(inl, OUTPUT);
pinMode(in2, OUTPUT);
/* Pins used for L298 DC Motor driver
#define enA 13 * PWM output, also visible as LED Set initial rotation direction
#define inl 8 /* H bridge selection input 1 digitalkirite(inl, LOW);
#define in2 9 * H bridge selection input 2 digitalkirite(in2, HIGH);
#define minPercent -100.0
#define maxPercent 100.0 }
void driveMotorPercent(double percentSpeed) void printLoop() -
. * Print count and control informati
Output PWM and H bridge signals based on positive or negative le
o o F o {
{ * Sample counter chip and output position and requested speed
percentSpeed = constrain(percentSpeed, -10@, 1@0); long encoderCountFromLS7366R = readEncoderCountFromLS7366R();
int regVal = map(percentSpeed, -100, 100, -255, 255); Serial.print("Court D
s . . ~ . Writa valie erial.prin ount from 6R = ");
arja}oglur lFe(e?A’ (int)abs(regval)); R TEeeE Serial.print(encoderCountFromLS7366R);
digitalWrite(inl, regVal>e); Set the value - alse Serial.print("” Percent speed = ");
digitalWrite(in2, !(regval»@)); depending on whether speed is posi Serial.print(percentSpeed);
} Serial.print("\r\n");

University of

Nottingham

UK | CHINA | MALAYSIA

Quadrature Serial or parallel
data
Hard- Serial
ware eria or | jaralpls
de- parallel on uP
aelar interface

. @ Motor Driver @ JEATTT WTMHHWH \

L

void loop()

{

e ald

unsigned long currentMillis = millis();

Print out value to serial monitor at interval

specified by printInterval variable

if (currentMillis - prevMillisPrint >= printInterval) {

-

nd n
Rec

save the last time you printed output
prevMillisPrint = currentMillis;
printLoop();
¥
\,
S s s s msmmmms—e=
leck if new dat s been input 1 monito
recviiithEndMarker();
if(convertNewNumber()) Update value read fr serial line
{
percentSpeed=dataNumber;
driveMotorPercent(percentSpeed); // Se speed value to mo

eive Qeed from the user

Experiment 2: DC Motor (Closed-loop control)

Desired Angle

Quadrature Serial or parallel

data

Hard- S

ware erial or | [SEreIple
e parallel on uP
coder interface

void loop()
{

unsigned long currentMillis = millis();

/ Call control loop at frequency controlInterval
if (currentMillis - prevMillisControl >= controlInterval)

| mmmessss———
L

Save the current time for comparison the next time the loop is called
prevMillisControl = currentMillis;
controllLoop();

}
4 Ay
Call print loop at frequ y of printInterval
if (currentMillis - preVM11115Pr1nt >= printInterval)
.\' { ------------
N Save the current time for comparison the next time the loop is called
prevMillisPrint = currentMillis;
printLoop();
N } /

N
m
’

recv llthErd!arker(),

If a valid number has been read this is set t required positi
\.} if(convertNewNumber())
I
L

positionSetPoint = dataNumber;

U Receive position from the user;

8 University of
I Nottingham Experiment 2: DC Motor (Closed-loop control)

UK | CHINA | MALAYSIA

Proportional Controller (P)

data

positionSetPoint = dataNumber;

} Receive position from the use

Hard- :
ware Serial or | /o ke bus : -
e _parallel on uP .
il interface | ; Control signal
[0 +0O)
-
L LR
void loop()
{
- unsigned long currentMillis = millis();
void controlLoop()
{ Call control loop at frequency controlInterval
double error: if (currentMillis - prevMillisControl >= controlInterval)
2
I
Get the current position From ';ﬂ; ;-‘_’;“‘f,;r“ L
wet 1he current position Trom the encode Save the current time for comparison the next time the loop is called
encoderPosnMeasured = readEncoderCountFromLS7366R(); previillisControl = currentMillis;
Calculate the difference in position from the required position | € controlLoop();
error = positionSetPoint - (double)encoderPosnMeasured; }
M1+ nl +hAa aatn s \
+tiply by the galll Call print loop at frequency of printInterval
percentDutyCycle = error * Kp; if (currentMillis - prevMillisPrint »>= printInterval)
driveMotorPercent(percentDutyCycle); {
// Save the current time for comparison the next time the loop is called
} prevMillisPrint = currentMillis;
printLoop();
\, } J
’ \l
recviWithEndMarker(); z !
If a valid number to rent required positio E
if(convertNewNumber()) i
{ i
1
1
1
1
1
U

8 University of
I Nottingham Experiment 2: DC Motor (Closed-loop control)

UK | CHINA | MALAYSIA

Desired Angle

Proportional Integral and Derivative

Quadrature Serial or parallel
data
Hard- 5
ontroller ware == ol
e parallel g
il interface T Control signal

=
8 .
(3
O

Ky .g e(0)

void loop()
{

- unsigned long currentMillis = millis();
void controlLoop()
{ Call control loop at frequency controInterval
double error: if (currentMillis - prevMillisControl >= controlInterval)
2
I

Get the current position from the encoder t cave the current time for comparison the next time the loop is called
encoderPosnMeasured = readEncoderCountFromLS7366R(); previillisControl = currentMillis;

Calculate the difference in position from the required positio < controlLoop();
error = positionSetPoint - (double)encoderPosnMeasured; }

Mirl+2n1y +he oain ’) - . Y
percentDutyCycle = error * Kp; if (currentMillis - prevmillisbrint >= printInterval)
driveMotorPercent(percentDutyCycle); {

Save the current time for comparison the next time the loop is called
} prevMillisPrint = currentMillis;
S B printLoop();

void controlLoop() \ ; J
’ A Y
{] recviWithEndMarker(); Update value read from serial line i
Get the current positi Trom the encoaer If a valid number has been read this is set to the current required positio E
encoderPosnMeasured=readEncoderCountFromLS7366R(); Get current motor position if(convertNewNumber()) i
myPID.Compute(); Use the PID library to compute new value for input { i
driveMotorPercent (percentSpeed); Send value to motor positionSetPoint = dataNumber; . oy i
) } Receive position from the user;
Ft ‘

8 University of
I Nottingham Experiment 2: DC Motor (Closed-loop control)

UK | CHINA | MALAYSIA

Proportional Integral and Derivative
Controller (PID)

void controlLoop()
{

~+ +he Fliirrant nacitson

}

Get the current positio Trom the encodaer
encoderPosnMeasured=readEncoderCountFromLS7366R(); Get current motor posi
myPID.Compute(); Use the PID library to compute new value for m
5F533ﬁ3€5?33?25nt(percentSpeed); Send value to motor

Desired Angle

Quadrature Serial or parallel
data

Hard- S

ware erial or | [SEreIple
e parallel on uP
coder interface

Kp e(t)

I

=
o
(3

O

Control signal

Ky .'% e(0)

void loop()
{

unsigned long currentMillis = millis();

Call contro oop at frequency controlnterva

if (currentMillis - prevMillisControl >= controlInterval)

I
L
Save the current time for comparison the next time The 10o0p 1S called
prevMillisControl = currentMillis;
G — controllLoop();
}
4 Ay
if (currentMillis - prevMillisbrint >= printInterval)
{
Save the current time for comparison the next time the loop is called
prevMillisPrint = currentMillis;
printLoop();
N\, } /
’ z \‘
recviWithEndMarker(); Update value read from serial line !
If a valid number has been read this is set to the current required position E
if(convertNewNumber()) i
{ i
positionSetPoint = dataNumber; |
. iy !
} Receive position from the user;

1
3 /

8 University of
I Nottingham Experiment 2: DC Motor (Closed-loop control)

UK | CHINA | MALAYSIA

Desired Angle

Proportional Integral and Derivative

__ Quadrature Serial or parallel
data
Hard- 5
ontroller
de- parallel 4
coder IniiEEs T Control signal

#include <PID_vl.h>

=
8 .
(3
O

Ky .g e(0)

double Kp = ©.05;

double Ki = 9.0;

double Kd =_©.0; void loop()

{
PID myPID(&encoderPosnMeasured, &percentSpeed, &positionSetPoint, Kp, Ki, Kd, DIRECT); unsigned long currentMillis = millis();

Ca contro oop at ;,W%]‘d%,‘,:‘ controInterva

if (currentMillis - prevMillisControl >= controlInterval)

void controlLoop() s
L
{ Save the current time for comparison the next time the loop is called
Get the current position from the encode prevMillisControl = currentMillis;

encoderPosnMeasured=readEncoderCountFromLS7366R(); Get current motor position €&——— controlloop();

myPID.Compute(); Use the PID library to comg ne alue fo input }

driveMotorPercent(percentSpeed); Send value to motor / T i N " N
} if (currentMillis - prevMillisbrint >= printInterval)

f
L8

Save the curre time r comparison the next time the loop is called

prevMillisPrint = currentMillis;
printLoop();

N\, } J
s’ \l
recviWithEndMarker(); Update value read from serial line !
If a valid number has been read this is set to the current required position i
if(convertNewNumber()) i
{ i
positionSetPoint = dataNumber; i

U Receive position from the user;

8 University of
I Nottingham Experiment 3: Stepper Motor (Open-loop control)

UK | CHINA | MALAYSIA

1) Simple approximation
2) Approximation based on Taylor series (e.g. Leib Ramp, Austin)

Velocity
Velocity profile

RS S

Stepper
motor
controller |gnd

void setup()
{
long stepsToGo = ©;
currentPosition = 9;
goToPosition(dataNumber);
pinMode(stepPin, OUTPUT);
pinMode(dirPin, OUTPUT);
Serial.begin(9600);
Serial.println("Enter target position in number of steps and hit return”);

prevStepTime = micros();

University of

Nottingham | Experiment 3: Stepper Motor (Open-loop control)

UK | CHINA | MALAYSIA

void loop()
il

unsigned long currentMillis = millis(); Velocity

unsigned long currentMicros; Velocity profile
recviWithEndMarker();

stepsToGo = computeStepsToGo();

I-:'L?-(Eo-r:/e-r:cFTeTﬂlTJ-mEe-v‘?)-)---

Fame e sane

Serial.print("Converted number: datanumber is: ");
Serial.println(dataNumber);

Only get to this
if (stepsToGo <= @)

if there was new data to conver

Stepper
motor
controller

goToPosition(dataNumber);
Serial.print("Got target position: ");
Serial.println(targetPosition);

* Define number of steps in acce 3)
accelSteps = long((maxPer‘mlssSpeed * maxPermlssSpeed) / (2.0 * (double)maxAccel)), Equation 4 S = (V2 - v02) / (2) a) [4, 16]’
stepsToGo = computeStepsToGo();

maxSpeed = maxPermissSpeed;

if (2 * accelSteps > stepsToGo)
{
Define maximum speed in profile and number of steps in acceler
maxSpeed = sqrt(minSpeed * minSpeed + stepsToGo * maxAccel);

accelSteps = (long)(stepsToGo / 2);

of e s €——d— v = (V’+2 2" S)"? 5]

pi = F/vi [7]

ps = ((double)ticksPerSec) / maxSpeed; Eq 7 €

-
[S ——

= (double)ticksPerSec / sqrt(minSpeed * minSpeed + 2 * maxAccel); Eq 17 but need initial ° p1 = F/ (V02 + 2 a)“z [17]
- ’

p=rpl;
R = (double) maxAccel / ((double)ticksPerSec * (double)ticksPerSec); Eq 19 ::

R=al/F? [19].

}

imed loop for print

41+]

Printing loop, slow! i

if (currentMillis - prevM1lllsPr1nt >= printInterval)

I
L

:me&uc;;; - mieres(ys Stepping loop! !

|1f (currentMicros - prevStepTime >= p)
f
L

save the last time you printed output

prevMillisPrint = currentMillis;
printLoop();

pFEvStepTlme = currentMicros;
computeNewSpeed();

it

1
1
1
1
1
mov eOreStep(), :
:
1
1
1

)

University of

Nottingham | Experiment 3: Stepper Motor (Open-loop control)

UK | CHINA | MALAYSIA

ove a single step, holding pulse high for delayMicroSeconds Calcuate new value of step interval p based stants defined in loop
void moveOneStep() void computeNewSpeed()
{ {
if (p != @) /* p=6 is code for "don't make steps” * double q;
{ double m;
digitalWrite(stepPin, HIGH); stepsToGo = computeStepsToGo();
if (direction == FWDS)
{) o * Start of on-the-fly step ca code, executed ce per step
Is something missing here? * if (stepsToGo == @)
digitalWrite(dirPin, HIGH); [
currentPosition++; p=8; Not actually a zero step interval, used to switch stepping off
} return;
else }
{ else if (stepsToGo > accelSteps & & (long)p > long(ps)) Speeding up
Is something missing here? * {
digitalWrite(dirPin, LOW); m = -R; definition following equation 20
currentPosition--; })
} else if (stepsToGo <= accelSteps) Slowing dowr
delayMicroseconds(steplLengthMus); { "= R
digitalWrite(stepPin, LOW); } ’
} else R ing at constant speed
} {
m=0;

{

p = ps;
}
if (p > p1)
{

p =pl;
}

r University of
A& Nottingham | Summ ary
UK | CHINA | MALAYSIA

» Understand finer details of how a stepper motor
1s used

« Understand how to interface a stepper motor to a
computer

» Appreciate the issues associated with generating
the movements for a stepper motor

« Understand the stepper motor characteristics

o LLink the lectures contents with what we will see
in the lab next week!

